为了克服这种老化技术带来的问题,沸水反应堆的管理人员决定在管网的重要区域应用由优化焊接材料制成的保护涂层。
为了使管段的内部准备好接受这种保护覆层,有必要在管道的整个内圆周上铣出一个宽度为60毫米、深度为4.5毫米的凹槽。
由INSPECTOR SYSTEMS开发的打磨机器人可以快速、可靠地处理这项困难的工作,并且正如人们所期望的那样,考虑到行业的大量安全因素,没有风险。
借助超声波和涡流技术以及射线照相检测和染料渗透检测,可以检查一段管道中的单面焊缝。在日常维护和系统关闭期间,应定期重复这些检查。管道内壁上焊缝根部的存在会对结果产生很大影响。焊缝内侧的焊根会极大地扭曲检查结果,因为很难确定被检查的是小裂缝还是焊根。
通过使用打磨机器人,可以容易地去除焊缝根部,从而可以获得准确可靠的测试结果。此外,去除焊缝根部可以改善管壁的内部。这意味着焊接接头对机械磨损和热磨损的抵抗力增加了。
机器人可通过管道中的闸阀轻松部署,并可远程控制,以便定位操作员可能需要的任何接头。
作为标准打磨机器人的补充,也可以为客户提供满足其特定和个性化要求的机器人。
机器人技术和合格的打磨和抛光工艺分别得到了不同国家/国际公司和风险管理组织的认可。
目前,铸件打磨加工面临着诸多挑战,如打磨环境中的大量噪声、非结构性铸件实体、整体形状变化中的倾斜等,这些都限制了铸件打磨加工的发展。因此,上述问题需要深入分析。
在石器时代,石磨主要用来制作各种刀、石斧和其他工具。在青铜时代,中国作为早采用铜冶炼的国家,掌握了先进的铸造后处理技术。锉刀用于弥补铸造缺陷,使铸件表面光滑,并使和工具更加锋利和抛光.进入铁器时代后,出现了旋转式磨具,为后续的机械打磨提供了参考。随着铁器和旋转工具的出现,以及蒸汽机出现后次工业革命的到来,制造材料主要是铸铁。虽然铸造产品发生了变化,但打磨方法仍然采用手工打磨。西门子在1866年开发了发电机,为机械打磨提供了技术支持。1914年,美国3M公司开发的砂纸产生了一种用于铸件后处理的新打磨工具。发展随后进入铸件后处理中人工与机械打磨相结合的时期,一直延续至今。